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The recently developed spin Hamiltonian approach to conjugated 7r-electron 
molecules is reexamined. A simultaneous optimization of the geometry and 
wave functions, achieved by the use of  the conjugate gradient method, facili- 
tates calculations of the molecular geometries in the ground and excited 
electronic states. The computation time increases approximately l i n e a r l y  with 
the number  of  basis functions, making calculations for molecules having up 
to 18 carbon atoms (48 620 basis functions) readily available. Geometries of 
several benzenoid hydrocarbons are optimized and the results are discussed. 

Key words: Spin Hamiltonian - -  Optimization of geometry - -  Conjugated 
molecules 

I. Introduction 

The reputation of the molecular orbitals (MO) methods in predicting the structure 
of stable, non-radical molecules in their ground states is almost as good as it is 
bad in calculations on radicals, transient species and molecules in excited states. 
Since the vast part of chemistry (and organic chemistry in particular) concerns 
with chemical reactions that involve unstable intermediates and transition states 
(in chemical processes), and excited electronic states (in photochemical  reac- 
tions), there is an understandable need for quantum-mechanical  methods that 
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can accurately describe these species. The obvious choice is to invoke the configur- 
ation interaction schemes or many-body perturbation theory. They can provide 
the required description of  electronic structure, but at the expense of an enormous 
use of computational time and the form of wave function that eludes simple 
interpretation based on the "chemical sense". 

Quite recently, a new ab initio method that includes electron correlation, based 
on the spin Hamiltonian has been applied to conjugated organic molecules [1, 2]. 
For metallic crystals the bulk properties have been reproduced successfully [3]. 
There is, however, one problem that hinders wide utilization of the spin Hamil- 
tonians in molecular calculations. For molecules with N atoms, one has (t~21) 
basis functions. This rules out computational feasibility of the spin Hamiltonian 
calculations for N larger than about 10 when traditional methods, involving 
diagonalization of the I-tamiltonain matrix, are used. 

For simple spin calculations, based on topological Hamiltonian (which would 
correspond to the Hiickel method in MO theory) there is a remedy for this 
computational problem [4, 5]. For the ab initio approach, Sanchez-Marin et al. 
[6] have proposed recently a variant of the many-body perturbation theory to 
approximate the ground state energy. However, this approach seems to suffer 
from several drawbacks. In .particular, selection of the reference states cannot be 
done automatically. The molecular geometry appears to depend to some extent 
on the choice of the reference states. The authors claim that using their method 
they can study (approximately) the electronic structure of molecules up to 20 
atoms, but they were able to optimize the geometry of molecules having at most 
12 atoms. 

The goals of the present paper are twofold. First, we present a computational 
algorithm that offers the possibility of extremely fast spin Hamiltonian calcula- 
tions. Second, we employ this algorithm to optimize the geometry of several 
conjugated hydrocarbons having up to 18 carbon atoms. Even for such large 
molecules the computations do not require excessive CPU time. In particular, 
optimization of the [18]-annulene molecule takes only one hour of CPU time on 
a VAX 780 digital computer. 

2. Computational algorithm 

Let the molecule under consideration be described by the set of linked pairs of 
carbon atoms {i-j}. The energy to be optimized reads: 

E[~0, {r0-}] = X. [R(rij)-2g(r~)<4,l~l~)/<4,[4,>], (1) 
1-J 

where r~j is the length of  the bond between atoms i and j, R and g are functions 
of rij described in [ 1 ]. They are extracted from a high-quality ab initio calculations 
on the So and T1 electronic states of the ethylene molecule. ~ is the spin bond 
order operator for the bond i-j. The wave function ~b is a linear combination of 
the neutral VB determinants built up from the p~ orbitals of the carbon atoms 
that constitute the molecule. Thus the spin Hamiltonian method is a simplified 
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variant of the VB approach. The reader is referred to [1-3] for more details. 
From Eq. (1) we see that the energy is a functional of both the trial wave function, 
0, and the set of bond lengths, {ru}. 

There are several ways to carry out the optimization of E. The traditional approach 
is to guess some trial geometry and then minimize E with respect to 0. This 
yields the energy for the guessed geometry. Repeating this for several sets of {r~j} 
results in optimized bond lengths and the corresponding energy. Optimization 
of the trial wave function can be achieved by diagonalization of the Hamiltonian 
matrix associated with the functional (1) or by invoking pseudodiagonalization 
procedures that are widely employed in "direct CI"  calculations [7]. Diagonaliz- 
ation of the Hamiltonian matrix is certainly a great waste of time, since we need 
the wave function and the corresponding energy of only one electronic state. One 
has to point out, however, that even a pseudodiagonalization technique used in 
connection with the geometry optimization is far from being optimal. One has 
to calculate a quite accurate wave function which will change anyway when {rij} 
is altered in the next cycle of the geometry optimization. What is really desirable 
is to optimize the wave function and geometry simultaneously. Unfortunately, 
such algorithms are lacking in the chemical literature. Therefore, we describe 
here this kind of computational procedure. 

The vector of the first derivatives of E with respect to {ro} (the "geometry 
gradient") is easily computed from Eq. (1): 

aE 
"yij = ar Z = R'( @ - 2g'( ru)( @[~olt~)/ ( g/ [ O). (2) 

To optimize the wave function we need a functional derivative of E with respect 
to (01 ("the wave function gradient") [8]: 

OE 
IT) = ~ = --2 ,-a ~ g(rij)(~iJ --(~[~010)l)140, (4, [ 0) = 1. (3) 

Since I~) is a linear combination of the basis functions, both Iq~) and 13') are 
represented by vectors. This means in practice that {3'0} and ]3') can be combined 
into one vector, ~,. Similarly, {r~j} and 10) can be combined into one vector, x, 
which is varied until the minimum of E is found. 

Several methods of optimization are known [9]. We cannot use any Newton or 
pseudo-Newton (variable metric) optimization procedures, since it would require 
calculation and storage of a matrix of at least Nb x Nb elements where Nb is the 
number of basis functions. Because of that we have to choose between the 
steepest-descent and the conjugate gradient algorithms. The steepest-descent 
method performs well in the first iteration [10], but convergence of the subsequent 
optimization cycles is poor  [9, 11 ]. Therefore we use here the conjugate gradient 
method of Polak and Ribiere [9]. In this approach a function of several variables, 
f (x) ,  is minimized iteratively. In every cycle, a step vector 

Sk = Ak [,~k_ ~ ~tk" (~/k--"Yk-1)(Sk_l/ak_l)] (4) 
~k-1 " "Yk-~ 
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is added to the old vector, Xk. The step size, Ak, is determined from the condition 
that the function of the new vector 

Xk+l = Xk -~- Sk (5) 

has a minimal value. One can thus say that a minimization of the function of 
several variables f ( x )  is replaced by a series of minimizations of functions of  
one variable, fk(Sk). Finally, one should note that 3'k and 3'k-1 are gradients of 
f ( x )  for x = Xk and x = Xk-1, respectively, and the recurrence (4) is initialized with 

S1 = /~1~1" (6) 

In optimization of the functional (1) we in fact use two different step sizes, one 
for the "wavefunction" and one for the "geometrical" part of x. This brings 
E[O,,{r~}] into the series of functions of two variables. The minimum of E with 
respect to these variables is calculated without any serious computational effort 
and at the same time the convergence is greatly enhanced. 

Summing up, in every cycle, the "wavefunction" gradient is calculated first. This 
step of optimization takes time proportional to the number of basis functions. 
Next, the "geometry" gradient is computed. This requires a negligible amount 
of time. Then, some auxiliary quantities that are used in the two-variable optimiz- 
ation are formed. This again takes a time proportional to Nb. The step vector is 
calculated from Eq. (4), but with two different A's (see above). After performing 
the two-variable optimization, we obtain a new set of bond lengths {ru} and the 
improved wavefunction, ~. The procedure is repeated until the norms of both 
"geometrical" and "wavefunction" gradients drop below some prescribed 
threshold. 

In the following calculations, we imposed a tolerance of 10 -3 for the gradient 
norms. This resulted in an error less than 10 -3 [A] for the bond lengths and less 
than 10 -5 a.u. for the energy. 

3. Results 

Using the technique developed in the previous section, we optimized molecular 
geometries of several 7r-conjugated hydrocabons both in the ground (So) and, 
for some of them, in the first excited triplet electronic (T1) state. Before presenting 
the results, we comment on the computational aspects of the calculations. 

In Table 1 we show the optimized total energies of some conjugated hydrocarbons 
together with the respective numbers of carbon atoms (N) ,  numbers of carbon- 
carbon bonds (M) and numbers of the basis functions. Total number of iterations 
required to attain the required accuracy (see above paragraph) is also reported 
together with the CPU time being spent per iteration. 

As expected, the CPU time per iteration grows linearly with the number of the 
basic functions: 

t -~ 2.  IO-SNMNb [s]. (7) 
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Molecule Electronic N M Number  Number  of CPU time per E o 
state of basis iterations iteration (s) b [au] 

functions 

Benzene So 6 6 20 3 1.7 -0.34655 
Benzene T 1 6 6 20 4 1.4 -0.25383 
Naphthalene So 10 11 252 10 2.5 -0.58620 
Naphthalene T 1 10 11 252 10 2.5 -0.51698 
Biphenylene So 12 13 924 11 4.1 -0.70238 
(E)-st i lbene So 14 15 3 432 13 12.7 -0.81175 
(E)-st i lbene TI 14 15 3 432 13 12.7 -0.75115 
Anthracene S o 14 16 3 432 14 13.7 -0.82392 
Phenanthrene So 14 16 3 432 12 14.0 -0.82874 
Pyrene S o 16 19 12 870 16 71.1 -0.95526 
Pyrene TI 16 19 12 870 14 71.9 -0.90472 
(18)-annulene So 18 18 48 620 13 302.1 -0.98640 
Triphenylene S o 18 21 48 620 13 360.3 -1.07304 
Triphenylene T l 18 21 48 620 14 354.9 -1.01633 

a Planar geometries assumed for all molecules. Tolerance for the gradient n o r m :  10  - 3  

b VAX 11/780 digital computer  

This means that even large systems can be treated using moderate-size digital 
computers. 

First, we report results on the ground state geometries of linear polyenes. There 
are some discrepancies (of  the order of i0 .002  [.&]) between our results and the 
bond length reported by Sanchez-Marin et al. [1] for small (2 to 10 atoms) 
molecules. These differences are not inherent to our computational procedure 
since they also persist in a standard full diagonalization/point-by-point optimiz- 
ation. This indicates that the authors of [1] probably used in their calculations 
a slightly different set of parameters from that quoted in their paper. Nevertheless, 

Table 2. Ground  state geometries of  linear polyenes a 

Bond Number  of atoms (N)  

2 4 6 8 10 12 14 16 18 

1-2 1.345(44) 1.352(51) 1.353(53) 1.353(53) 1.353(53) 1.354(53) 1.354 1.354 1.353 
2-3 1.443(45) 1.441(42) 1.440(41) 1.440(49) 1.440(49) 1.439 1.440 1.440 
3-4 1.359(60) 1.362(62) 1.363(60) 1.363(61) 1.363 1.363 1.363 
4-5 1.436 (38) 1.435 (38) 1.435 (43) 1.435 1.435 1.435 
5-6 1.364 (65) 1.365 (64) 1.365 1.365 1.365 
6-7 1.434 (42) 1.434 1.433 1.433 
7-8 1.365 1.366 1.366 
8-9 1.433 1.433 
9-10 1.366 

a Exact results [2] for N = 2, 4, 6, 8 and t0 and approximate results [6] for N = 12 (last two digits) 
quoted in parenthesis 
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these differences are very small and do not alter general observations that we 
comment on below. 

The most significant feature of the calculated geometries of the ground state of 
linear polyenes is the occurrence of  almost constant bond alternation pattern in 
the central parts of molecules. The bond lengths of 1.366/1.433 [/~] compare very 
favorably with the experimental values for (E)-polyacetylene [14] (1.36 and 
1.44 [A]). This means that the spin Hamiltonian calculations are capable of 
incorporating electron correlation effects which are responsible for a proper 
balance between these bond lengths. For the T1 state of octadecanonaene a 
significant soliton structure is predicted to occur (Table 3). 

The optimized geometries for several 7r-conjugated systems are listed in Table 
4. Experimental geometries together with those calculated from molecular 
mechanics [12] are shown for comparison. Some nonplanar molecules, such as 
biphenyl and (E)-sti lbene are also included in Table 4, even if their planar 
geometry can differ significantly from the actual one. 

As one can conclude from Table 4, the spin Hamiltonian calculations have their 
own merits and defects. There is a good reproduction of the patterns of shorter 
and longer bonds which is, as one should remember, obtained without any 
empirical parametrization whatsoever. On the other hand, there is some artificial 
tendency of  "equalization" of  the bond lengths. In particular, the almost single 
bonds (like the inter-ring bond in biphenylene) are calculated too short, while 
the almost double bonds (like the "a"  bond in (E)-stilbene) are predicted too 
long. It is not clear at this moment whether this is an inherent defect of  the spin 
Hamiltonian method or results from the fact that the functions R and g (Eq. (1)) 
were retrieved from the ab initio calculations on the ethylene molecules that were 
carried out within a rather narrow range of carbon-carbon bond lengths. This 
could result in a rather poor representation of the above functions by the 
polynomials quoted in [1]. 

Let us discuss briefly the results for individual molecules. [18]-annulene is a 
particularly interesting case. There is a disagreement between predictions from 
various quantum-mechanical calculations [13], but in general SCF methods favor 
the structure with a pattern of alternating single and double bonds, while CI 
approaches favor an aromatic structure. The spin Hamiltonian calculations yield 
perfectly equal bond lengths. 

Marked differences can be observed between the geometries of So and T1 electronic 
states of (E)-stilbene. The central double bond becomes much longer in the 
triplet state. This, being a sign of a weakened bond strength, facilitates the rotation 

Table 3. The T 1 state geometry of octadecanonaene 

Bond 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 

Bondlength [.~] 1.362 1.425 1.389 1.399 1.412 1.379 1.428 1.369 1.434 



Table 4. Ground  state molecular geometries of  selected ~r-conjugated systems a 

Molecule /bonds  Bond lengths [/~] 

Exp. MMPI  b Spin Hamiltonian ~ 

Benzene 1.399 • 0.001 1.397 1.394 (1,414) 

Naphthalene a 1.412 1.420 1.408 (1.394) 
b 1.371 1.377 1.381 (1.409) 
c 1.422 1.427 1.413 (1.408) 
d 1,420+0.008 1.412 1.407 (1.427) 

Biphenylene a 1.400 1.397 1.394 
b 1.400 1.397 1.392 
c 1.400 1.403 1.398 
d 1.490 1.491 1.443 

(E)-st i lbene a 1.338 1.351 1,361 (1,385) 
b 1.473 1.477 1.440 (1.425) 
c 1.406 1.407 1.399 (1.425) 
d 1.393 1.395 1.392 (1.385) 
e 1.393 1.397 1.395 (1,404) 
f 1.391 1.397 1.395 (1.404) 
g 1.390 1.397 1,392 (1.385) 
h 1.402 1,405 1.399 (1.425) 

Anthracene a 1.418 1.430 1.413 
b 1.375 1,369 1.377 
c 1.444 1,439 1.418 
d 1.433 1.424 1,414 
e 1.405 • 0.008 1.405 1,400 

Phenanthrene a 1.394 1.408 1,403 
b 1.401 1.386 1,386 
c 1.409 1.419 1.406 
d 1.420 1.412 1.404 
e 1.465 1.460 1.426 
f 1.350 1.361 1.373 
g 1.453 1.444 1.422 
h 1,423 1.418 1.407 
i 1.386• 1.383 1.385 

Pyrene a 1.395 1.396 1.393 (1.395) 
b 1.406 1.405 1.401 (1.416) 
c 1.438 1.448 1.423 (1.406) 
d 1.367 1.361 1.372 (1.396) 
e 1.425 1.416 1.410 (1.416) 
f 1.430 • 0.004 1.433 1.415 (1.412) 

[18]-annulene ~ 1.382/1.419 1.397/1.402 1.397 

Triphenylene a 1.397 1.402 1.401 (1.404) 
b 1,381 1.389 1.388 (1.393) 
c 1.410 1.415 1.404 (1.408) 
d 1.413 1,412 1.403 (1.420) 
e 1.458 a: 0.006 1.466 1.431 (1.416) 

a Bonds designation and experimental geometries from [12] except as indicated otherwise; b [12]; 
c Planar geometries assumed for all molecules. In parenthesis geometrical parameters for the 7"1 
electronic state; a M N D O C  geometry [13] 



278 J. Cioslowski 

a round  this bond.  The (Z)-~(E) isomerizat ion of st i lbene is well known  to 
proceed through the T~ state, Not  surprisingly,  u p o n  the excitat ion the geometry 

of the benzene  rings remains  almost unchanged .  

4. Conclusion 

Geometr ies  of several conjugated  hydrocarbons  were opt imized for the first t ime 

within an ab initio spin Hami l ton ian  method.  This al lowed us to judge  the 
drawbacks and  merits of  this approach.  We conclude  that the spin Hami l ton ian  
calculat ions can be per formed in a rout ine matter  even for quite large molecules.  

The calculat ions has a chance to become a valuable  tool for chemists s tudying 

intermediate  products  and  excited states of organic molecules.  
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